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ABSTRACT
We propose a method to automatically detect emotions in
unconstrained settings as part of the 2013 Emotion Recog-
nition in the Wild Challenge [16], organized in conjunction
with the ACM International Conference on Multimodal In-
teraction (ICMI 2013). Our method combines multiple vi-
sual descriptors with paralinguistic audio features for mul-
timodal classification of video clips. Extracted features are
combined using Multiple Kernel Learning and the clips are
classified using an SVM into one of the seven emotion cat-
egories: Anger, Disgust, Fear, Happiness, Neutral, Sadness
and Surprise. The proposed method achieves competitive
results, with an accuracy gain of approximately 10% above
the challenge baseline.

Categories and Subject Descriptors
I.4.9 [Image Processing and Computer Vision]: Ap-
plications; I.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis; H.5.1 [HCI]: Multimedia Informa-
tion Systems

General Terms
Machine Learning, Emotion Recognition

Keywords
Support Vector Machine, Multiple Kernel Learning, Bag of
Words, Multimodal, Feature Fusion

1. INTRODUCTION
In this paper, we propose a method to automatically detect
emotions in the wild, as part of the Emotion Recognition
in the Wild Challenge, organized in conjunction with the
ACM International Conference on Multimodal Interaction
(ICMI 2013) [16]. The challenge dataset called Acted Fa-
cial Expression in the Wild (AFEW) [17] consists of short
audio-video clips extracted from a set of Hollywood movies.
Separate sets of videos were provided for training and val-
idation and labeled as one of the seven emotion categories:

Anger, Disgust, Fear, Happiness, Neutral, Sadness and Sur-
prise. The task is to classify a sample audio-video clip into
one of these seven categories. Our method uses Multiple
Kernel Learning (MKL) to find an optimal combination of
audio and visual features for input into a non-linear sup-
port vector machine (SVM) classifer. The visual features
used were dense multi-scale SIFT BoW [40], LPQ-TOP [31],
HOG [13], PHOG [6], and gist [30] features.

The paper is organised as follows. Section 2 gives a brief
overview of existing related work, followed by Section 3
that introduces the dataset that was used for this challenge.
Next, Section 4 describes the proposed method in detail,
including descriptions of the various features that were ex-
plored in the audio and video modalities. This is followed
by Section 5 that summarizes the results, after which a dis-
cussion is presented in Section 6. The paper is concluded in
Section 7.

2. RELATED WORK
Automatic detection of human emotions from a scene finds
numerous applications such as in human-computer inter-
faces, intent analysis and image retrieval. Most existing
methods rely either on visual data or audio data for emotion
recognition, although there is relatively little work on recog-
nition of human emotions using audio data as compared to
video data [38].

In one of the early works based on audio features [2], Chiu
et al. deployed a multilayered neural network for automatic
classification of emotions using five features that were ex-
tracted from speech. In [20], Chen et al. estimated pitch,
intensity, and pitch contours as acoustic features, which were
then classified into the following basic emotion categories us-
ing a rulebased approach: happy, sad, fear, anger, surprise
and dislike. Scherer et al. [36] extracted a more exhaustive
set of 29 audio features from speech and concluded, “Sad-
ness and anger are best recognized by audio data, followed
by fear and joy. Disgust is the worst.”

Most vision-based emotion recognition studies focus on fa-
cial expression analysis, given the importance of the face in
emotion expression and perception [51]. Ekman et al. [19]
developed the Facial Action Coding System (FACS) to ob-
jectively measure facial activity for behavioral science inves-
tigations of the face. The FACS defined 46 Action Units, or
AUs, corresponding to each independent motion of the face.
A trained human FACS coder decomposes an observed ex-



Figure 1: Classification pipeline of the proposed method. Once visual and audio features are extracted we
construct a radial basis function (RBF) kernel from each descriptor. We then use MKL to optimally combine
the feature kernels for input into an SVM classifier.

pression into the specific AUs that produced the expression
[38]. [18] presented a comparative analysis of several tech-
niques for automatic recognition of facial expressions using
FACS, involving optical flow, principal component analy-
sis, independent component analysis, local feature analysis,
linear discriminant analysis, Gabor wavelet representations
and local principal components. Lucey et al. [25] used Ac-
tive Appearance Models for extracting facial features. Near-
est Neighbor (NN) classifiers and Support Vector Machines
(SVM) [41] were used for the classification of FACS units
[19].

Yacoob et al. [50] proposed a method that involved track-
ing of facial parts and applying optical flow in high gradient
regions to identify directions of rigid and non-rigid motions
caused by human facial expressions. A high level facial ex-
pression classification was obtained using a mid-level rep-
resentation of the flow direction. Another approach based
on optical flow proposed by Black et al. [4] accounted for
changes in image appearance by generalizing optical flow to
provide a richer description of image events. Different para-
metric models were used to extract parameters from facial
features and a nearest neighbor classifier was used for ex-
pression recognition.

In order to tackle the problem of expression recognition in
profile face image sequences, Pantic et al. [32] proposed a
method that segmented profile faces using connected com-
ponent analysis in HSV space. A contour based method was
further applied to extract 20 points, that were used for AU
detection.

Further improvements to this work can be found in [33] and

[43]. In [33], Motion History Images were used and tempo-
ral rules were applied to identify AUs, while in [43], wavelet
based gentleboost template were used for tracking 20 fa-
cial landmark points, which were then used for construct-
ing spatio-temporal features. Dhall et al. [15] proposed a
method for automatic emotion recognition based on pyramid
of histogram of gradients (PHOG) [7] and local phase quan-
tisation (LPQ) [29] features. For classification, they used
SVM [41] and largest margin nearest neighbour (LMNN)
[5].

Psychological studies such as [3], [35], [38], have highlighted
the importance of using multiple modalities to strengthen
the accuracy of the emotion analysis. In [9], Carlos et al.
analyzed the strengths and weaknesses of vision-only and
audio-only based expression analysis systems. They also
outlined approaches for fusing the two modalities, and it
was shown that when these two modalities were fused, the
performance and the robustness of the emotion recognition
system improved measurably. Tawari et al. [42] presented
a multimodal facial expression recognition framework using
audio-visual information, showing that not only accuracy
was improved by the integration of audio and video features,
but there was also a reduction in computational cost.

3. DATASET
The Acted Facial Expression in the Wild (AFEW) dataset
[17] consists of short video clips extracted from popular Hol-
lywood movies. While automatic facial expression recogni-
tion has been an active area of research for decades, previous
work has focused on datasets collected in uniform conditions
with posed facial expressions removed from emotional con-
text [24] [34] [26]. The goal of the AFEW dataset is to



address the challenges in recognizing emotions in near real-
world conditions. Each clip contains an actor expressing one
of seven emotions: neutral, happy, sad, disgust, fear, anger,
or surprise. The goal of the challenge is to correctly distin-
guish between the seven emotions. AFEW contains train-
ing, validation, and testing datasets, respectively consisting
of 380, 396, and 312 video clips. For the final submission,
use of the validation set is limited to setting model hyperpa-
rameters. Since the test set labels are currently unavailable
in this paper we only report results on the validation set.

There were a number of challenges encountered while work-
ing with this dataset. Firstly, the range of poses in the
dataset was quite vast. As a result of this, readily available
face detectors such as the OpenCV Viola Jones [46] failed
to give the required face initialization. This prompted us to
explore advanced face detection methods, such as the one
used in the proposed method. Secondly, there was signifi-
cant variation in the way the same emotion was expressed
by different subjects in different videos. In many cases, it
was difficult for even human viewers to discern the emotion
displayed in the video. Thirdly, most video samples con-
sisted of multiple human subjects, making it challenging to
isolate the primary candidate of interest. Lastly, the number
of training samples was low, given the complex nature of the
dataset. This in turn imposed a challenge for the prediction
task.

4. METHOD
We created a multimodal classification system by combin-
ing audio and visual features using Multiple Kernel Learn-
ing (MKL). For visual features, we experimented with dense
multi-scale SIFT BoW [40], LPQ-TOP [31], HOG [13], PHOG
[6], and ”gist” [30] features. For audio features, we used a set
of paralinguistic features provided by the challenge organiz-
ers [16]. We built a Radial Basis Function (RBF) kernel from
each set of descriptors and use MKL to optimally combine
them for input to a support vector machine (SVM). A visual
overview is given in Figure 1. The following sub-sections de-
scribe each component of our process in more detail.

4.1 Face Extraction and Alignment
For extracting faces from the video frames we combined a
state-of-the-art face detection method [54] with a recently
proposed tracking method [49]. Recent work in face detec-
tion has focused on part-based deformable models including
Active Appearance Models (AAMs) [27], and their exten-
sion Constrained Local Models (CLMs) which build global
models on top of local part detectors [12]. For face detec-
tion we used Zhu and Ramanan’s deformable parts model
(DPM) which achieved competitive results by fitting a mix-
ture of trees model and then applying a shape model similar
to AAMs and CLMs [54]. This model is able to handle
non-frontal head pose which is especially important for suc-
cessful face detection in the AFEW dataset. Following ini-
tialization, the facial landmarks were then tracked using the
supervised descent method (SDM) [49]. SDM provided an
efficient framework for fitting AAMs that outperformed dis-
criminative methods through supervised linear estimation
of the descent direction. The DPM model was used to re-
initialize the facial landmarks whenever the tracker failed.

Figure 2: Pipeline for BoW extraction

4.2 BoW on Faces and Scene
We used a Bag of Words (BoW) model on top of multi-scale
dense SIFT features (MDSF) [45], which has shown promise
for application to automatic facial expression recognition
[40]. The strength of this approach lies in the combina-
tion of dense feature sampling, implicit inclusion of spatial
information through a multi-scale pooling step using spa-
tial grids [22], and state-of-the-art feature encoding using
Locality-constrained Linear Coding [47]. The approach is
outlined in Figure 2.

First, we sampled multiscale dense SIFT features (MDSF)
[23] [45] using a stride of 4 pixels. Four different scales
were used by setting the SIFT spatial bins to 8, 12, 16,
and 32 pixels. The codebook for BoW was generated us-
ing approximate K-means clustering, a clustering approach
that employed data-to-cluster distances using the Approx-
imate Nearest Neighbor algorithm. For clustering we used
the code provided by the authors in [11] and a randomly
selected subset of 1,000,000 features. Once the codebook of
MDSF cluster centers was generated, each local MDSF was
assigned to a codeword using Locality-constrained Linear
Coding (LLC) [47]. LLC projected each descriptor to a lo-
cal linear subspace spanned by a selection of the codewords
using an optimization problem.

The traditional Bag of Words model is robust to spatial
translation, but sacrifices spatial layout information dur-
ing the histogramming process. Spatial Pyramid Matching
(SPM) implicitly incorporates spatial information into the
feature representation through histogramming within differ-
ent subdivisions of the image [22]. For SPM each image
was partitioned into 2l x 2l segments at multiple scales l
= 1,2,4,8. The BoW representation was then computed
within each of these segments, and all of the subsequent
BoW histograms were concatenated into a single feature vec-
tor. Since each frame of the video produced a pyramid BoW
feature vector, information from all frames of the video were
combined using max spatial pooling, accomplished by tak-
ing the maximum of the pyramid BoW feature vectors over
all frames [39].



Inspired by recent work in multiple dictionary classification
[52] [1], we included multiple BoW kernels, each built using
a different dictionary size. Each dictionary represents the
structure of the data at a different resolution, and thus may
contain complementary information. We experimented with
dictionary sizes of 200, 400, and 600. Experiments by [40]
showed that performance saturates at larger dictionary sizes.

In addition to extracting BoW descriptors from the aligned
face images, we extracted BoW descriptors from the entire
image. We reasoned that descriptors from the whole image
may contain information about aspects important to emo-
tion recognition, such as body posture, context, and scene
information. BoW features for the entire image were com-
puted using a dictionary size of 600.

4.3 LPQ-TOP
Local Binary Patterns from Three Orthogonal Planes (LBP-
TOP) are efficient representations of dynamic image texture
[28], and successfully applied to facial expression recogni-
tion [53]. Local Phase Quantization from Three Orthogo-
nal Planes (LPQ-TOP) is a variant of LBP-TOP which is
additionally robust to image blur and uniform changes in
illumination [31].

We used the code by the authors of [31] to extract LPQ-
TOP features. First we calculated the short term Fourier
transform (STFT) over neighborhoods of MxMxN pixels
with neighborhood Nx centered at each pixel x, where M
and N equal the sizes of the neighborhood in the spatial
and temporal domains, respectively. We tested M and N
at 5, 7, and 9 pixels. We then took the 13 lowest non-zero
frequency points as these are more likely to contain blur-
invariant phase information. We separated the imaginary
and real components of the frequency points to get vectors
of length 26 from each sampled pixel in the image x. This
generated an excessive number of feature vectors, so PCA
was used as a method to reduce the set to a smaller num-
ber of uncorrelated descriptors. We applied a decorrelation
transform with spatial and temporal correlation coefficients
ρs = .2 and ρt = .2, and projected the data using the largest
L = 8 eigenvectors. The resulting descriptors were then
quantized using a simple scalar binary quantization method.
The quantized coefficients were mapped to integer value us-
ing binary coding. Finally, a histogram of dimensionality 2L

was generated from the resulting integer values at all pixel
positions x. Separate histograms were generated for three
orthogonal planes, similar to LBP-TOP, and then all three
histograms were concatenated into one vector. The window
settings of 5, 7, and 9 were respectively used for LPQTOP-5,
LPQTOP-7, and LPQTOP-9.

4.4 HOG + PHOG
Histogram of oriented gradients (HOG) [13] features are
commonly used in computer vision problems to describe
shape information for object detection. HOG is based on
the fact that local object appearance and shape within an
image can be described by the distribution of intensity gra-
dients or edge directions. HOG features have been used to
describe the shape of human faces, in the context of static
facial expression analysis. PHOG is a variant of HOG based
on pyramids, which has been used for object detection [6]
and facial expression analysis [15].

Descriptors Functionals

PCM loudness Position max/min

MFCC [0-14] arith. mean, std. deviation

log Mel Freq. Band [0-7] skewness, kurtosis

LSP Frequency [0-7] lin. regression coeff 1/2

F0 lin. regression error Q/A

F0 Envelope quartile 1/2/3

Voicing Prob. quartile range 2-1/3-2/3-1

Jitter Local percentile 1/99

Jitter consec. frame pairs percentile range 99-1

Shimmer local up-level time 75/90

Table 1: Sound features: 38 low level descriptor
along with their first regression coefficients, 21 func-
tionals. Table reproduced from [37].

We apply both HOG and PHOG features for capturing the
local shape information of the faces. Canny edge detector
were first applied to the cropped face, after which the face
was divided into spatial grids at each pyramid level. Next, a
3x3 Sobel filter was applied to the edge contours to calculate
the orientation gradients, which were then combined at each
pyramid level. We used an orientation range of [0-360] and
set the number of pyramids to 4 and the number of bins to
9. To attain a fixed length representation of each video, we
took a max-pooling of the HOG and PHOG features over
all frames.

4.5 Gist
We hypothesized that apart from the humans in the scene,
the higher level context of the scene may also contain dis-
criminative information for the problem at hand. To capture
the context, ”gist” features were used. Gist features were
originally proposed by Aude Oliva et al. [30] as an approach
to recognizing real world scenes without the need for either
segmentation or recognition of individual objects or regions.
The gist features were generated for different settings with
orientations per scale set to 4, 8 and 16, and number of
blocks set to 4 and 8, resulting in different lengths of gist
descriptors. The descriptors from each frame in a video were
then combined using a max-pooling operation.

4.6 Sound
In the previous sections we used multiple methods to rep-
resent the visual content of the dataset. In [14], experi-
ments showed that humans alternatively rely on audio and
visual information depending on which emotion was being
expressed, suggesting the use of both audio and visual fea-
tures for improving emotion recognition systems. This is
supported by empirical findings that automatic systems which
combine audio and visual features have higher accuracy of
emotion identification than the equivalent monomodal sys-
tems [10] [48].

One successful approach to acoustic feature extraction for
emotion recognition has been to extract timeseries of mul-
tiple paralinguistic descriptors and use pooling operations
such as max or min on each timeseries to extract feature
vectors. Such an approach was used as the baseline for the



2010 INTERSPEECH paralinguistic speech challenge and
is described in detail in the paper [37]. A total of 1,582
speech features were generated for each video by taking 21
functionals of 38 low level descriptors and their first regres-
sion coefficients. Descriptors and functionals are detailed
in Table 1. 16 zero-information features were dropped (e.g.
min F0 is always zero) and an additional two features were
added, F0 number of onsets and turn duration. These sound
features were extracted and posted for use by the challenge
authors [16].

4.7 Classification using MKL-SVM
Once we have extracted multiple feature representations of
the data from both the audio and visual domains, we wish
to combine the information contained in each of our descrip-
tors in a way that increases the discriminatory power of our
classifier.

Two common methods for fusing multiple feature represen-
tations are feature-level, where a single classifier is trained
using all features as input, and decision-level, where a classi-
fier is trained for each feature separately and a decision rule
such as the sum rule or majority voting combines the classi-
fier outputs. We followed a feature fusion approach based on
Multiple Kernel Learning (MKL) [21]. Rather than using a
single-feature kernel, MKL was used to find an optimal lin-
ear combination of base kernels which was used for training
a SVM.

We tried the MKL implementation as given in [8] and [44].
Both of these implementations gave the same results, how-
ever we selected [8] since it poses the MKL as a convex-
optimization problem promising an optimal solution. This
work followed the one-vs-all multi-class classifier startegy,
learning unique kernel weights for each class. This implemeta-
tion gave us better results as compared to one-vs-one multi-
class classifier strategy as discusssed in Section 6.

We set N as the number of training examples and M as
the number of features used for MKL. We define our feature
sets Xm for m ∈ {1, ...,M} and labels yi ∈ {−1, 1} for i =
1, ..., N . For each feature set we generated an RBF kernel
Km ∈ Rnxn with the kernel function k(xi, xj) = exp(−‖xj−
xi‖/γ). To select the spread parameter γ for each kernel, we
performed a grid search and selected the values which gave
the best classification accuracy.

The dual formulation of the SVM optimization problem is
then

max
α,β

[
N∑
i=1

αi −
N∑

i,j=1

αiαjyiyjKmkl(xi, xj)

]
(1)

N∑
i

αiyi = 0

0 ≤ αi ≤ C

Kmkl � 0

Where Kmkl is defined as the convex combination of all fea-
ture kernels

Kmkl =

M∑
k

βkKk (2)

M∑
k

βk = 1

βk ≥ 0 ∀k

MKL learns both the kernel weights β and the SVM coeffi-
cients α. We used grid search to set the value of the regu-
larization parameter C. The above equations are a generic
formulation of the MKL-SVM problem and as specified ear-
lier we used the method described in [8] to solve the opti-
mization problem.

5. RESULTS
We wanted to highlight the importance of using multiple fea-
ture combinations for this particular task. This point has
been shown using the results presented in Table 2, which
shows the validation set accuracy for BoW features alone,
4 different feature pairs, and our final method which com-
bined 11 features. The average accuracy for combining two
features was approximately 34%. Our final submission was
prepared using a combination of 11 feature kernels: HOG
with 4 and 8 bins, PHOG with 4 bins, BoW on extracted
faces with dictionary sizes of 200, 400, and 600, BoW com-
puted on the entire image, LPQ-TOP with block sizes of 5,
7, and 9, and sound. The final submission to the challenge
gave a classification accuracy of 37.08% on the validation
set. For videos where no face was detected, we relied on an
alternate classification pipeline built with the sound kernel
only. Since 7 MKL-SVM classifiers were trained in a one-vs-
all approach, the mean and standard deviation of the kernel
weights across different classifiers has been shown in Table 3.

The pre-computed baseline performances have also been in-
cluded in Table 2. The video-only baseline was calculated by
the challenge authors using DPM [54] to localize the faces.
These faces were then aligned and LBP-TOP [53] features
were extracted from non-overlapping blocks of dimension
4x4. For classification a non-linear SVM was then learned on
top of the concatenated LBP-TOP histograms. The audio-
only baseline was computed using the same sound features
as described earlier in this paper, but with a linear kernel
SVM. For the audio-visual baseline the LBP-TOP and sound
features were simply concatenated and used to train a non-
linear SVM. The accuracy of the baseline method on the
validation set for visual-only, audio-only, and visual+audio
was 27.27%, 19.95%, and 22.22%, respectively.

The confusion matrix on the validation data for our final
method is shown in Figure 3. Our classifier was most suc-
cessful in handling Anger and Happiness, with respective
accuracies of .71 and .68, and least successful in handling
Fear and Disgust, which gave accuracies of .02 and .08, re-
spectively. It can also be seen that a high percentage of
other emotions such as Sad, Surprise, Disgust and Fear were
wrongly classified as Neutral.



Method Accuracy

BoW-600 33.16%

BoW-600 + LPQTOP-5 33.94%

BoW-600 + Sound 34.99 %

LPQTOP-5 + Sound 34.99 %

BoW-600 + gist 34.99 %

Final submission 37.08 %

Baseline video 27.27

Baseline sound 19.95

Baseline video+sound 22.22

Table 2: The overall accuracy of our MKL-SVM
pipeline using multiple descriptor combinations.
Baseline accuracies are listed for comparison.

Kernel Name Mean Weight (Std)

HOG-4 .5008 (.1167)

BoW-200 .2024 (.0614)

BoW-400 .1186 (.0544)

BoW-600 .1112 (.0230)

LPQTOP-5 .0252 (.0212)

Sound .0184 (.0088)

HOG-8 .0177 (.0061)

LPQTOP-9 .0028 (.0029)

LPQTOP-7 .0008 (.0009)

BoW-FullScene .0006 (.0010)

PHOG-4 4.4e-05 (.0001)

Table 3: List of all 11 descriptors used in our top-
accuracy MKL-SVM framework along with their
learned kernel weights, sorted in order of descending
kernel weight. The mean and standard deviation of
the kernel weights are calculated across classes.

6. DISCUSSION
The BoW descriptors on their own performed well above
the video-only baseline, suggesting that these features are
better-suited to the current task than LBP-TOP. In ad-
dition, BoW/LPQTOP+Sound and BoW+gist performed
better in comparison to BoW+LPQTOP. Since the kernels
combined in the BoW+LPQTOP method were both calcu-
lated from features extracted over aligned faces, the higher
performance from using gist and Sound can be attributed
to their encoding multimodal information beyond facial ex-
pression.

As opposed to using MKL for feature fusion, the baseline
accuracies provided by the organizers were calculated by
simply concatenating together multiple descriptors prior to
training the non-linear SVM [16]. The concatenation method
for feature fusion was clearly inappropriate for the AFEW
dataset as it resulted in lower performance of the audio-
visual system vs. classifiers trained using vision or sound
only. This drop in performance could be attributed to use
of a single value of the γ parameter for all features when
constructing the RBF kernel. In contrast, MKL can con-

trol the relative complexity of the different feature kernels
through distinct γ parameters for each feature. Further-
more, MKL performs feature selection by learning a convex
combination of the kernels. While the concatenation method
represents an equal confidence in each descriptor, MKL suc-
cessfully handles discrepancies in the discriminative power
of different features by assigning lower weights to less dis-
criminative feature kernels. This is evidenced in the small
weight of the sound kernel as compared to the visual ker-
nels (see Table 3). From both the baseline results and our
experiments it is clear that sound features are less discrim-
inative for emotion recogntion in the AFEW dataset, and
MKL sets the weights accordingly. Similarly, the weight for
features extracted over the entire scene, .0006, is relatively
small. Since we did not remove the face from these images,
it could be possible that no information relevant to emotion
recognition is added through analysis of the entire scene.

Another component of our MKL+SVM method was the use
of one-vs-all as opposed to one-vs-one multi-class classifi-
cation, due to lower performance observed in experiments
using one-vs-one classification. To account for the observed
decrease we point to the smaller number of negative train-
ing examples available to each classifier under the one-vs-one
scheme. For one-vs-one classification the number of negative
training examples is approximately 50, while for one-vs-all
classification this number is about 300. We reason that a
greater number of training examples is especially important
to our task given the complexity of the AFEW dataset and
the sensitivity of SVM classifiers to outliers.

Another improvement in our method resulted from combin-
ing DPM [54] for face detection with SDM [49] for tracking.
Face detection without tracking sometimes results in facial
alignment errors from one frame to the next; while many
feature extraction methods, such as Bag of Words, are ro-
bust to these shifts in alignment, we still observed small im-
provements in emotion recognition when we used a tracking
method in conjunction with DPM face detection.

7. CONCLUSION
We proposed a novel method for multimodal emotion recog-
nition in unconstrained near real-world conditions. We used
a novel combination of DPM and SDM to yield a robust face
initialization and tracking. Our pipeline of multiple kernel
learning and support vector machine classification gave an
optimal performance of 37.08% on the validation set, which
was well above the highest challenge baseline of 27.27%.
While our MKL-SVM method showed improvement above
the baseline method, possible limitations include high com-
putation costs for feature extraction and grid search. This
could be mitigated through offline parameter selection using
parallelization.
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