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EXPERIMENTAL PROCEDURES

Video Analysis

Timestamps were manually identified
for thebeginningandendofthe5-minute
ongoing pain event and 10-second
transient pain windows. Ongoing and
transientpainvideosegmentsfromeach
studyvisitwereextracted fromrecorded
visit videos based on these timestamps.

Videos were analyzed by CERT.1 CERT
automatically detects faces and codes
each frame of video for the presence
and movement intensity of a set of AUs
from FACS. CERT operates in real time,
with an optimal pixel resolution of 963
96 face size and frontal view face
angles of615° of frontal in yaw, pitch,
and roll. Fourteen AUs previously re-
lated to pain were selected for analy-
sis. The following were selected for
analysis: brow lower (AU 4), cheek
raiser (AU 6), lid tightener (AU 7), nose
wrinkle (AU 9), upper lip raiser (AU 10),
lip corner puller (AU 12), lips part (AU
25), jaw drop (AU 26), mouth stretch
(AU 27), and eye closure (AU 43) (for
reviews see Prkachin2,3 and Larochette
et al4). In addition, 3 dimensions of head
pose (yaw, pitch, and roll) were tracked
to measure if they were pain-related
head movements.5 Measured AUs are
listed in Table 1 of the main text.

Three statistics (mean, 75th percentile,
and 25th percentile) for each AU were
computedacrosseachpaineventprobe
(ongoing and transient). For each event,
14 AUs3 3 statisticswere concatenated
into a 42-dimensional vector (the facial
behavior data vector). Video samples
were excluded when ,10% of frames
did not contain a detected face because of
occlusion or nonfrontal head orientation.
Evaluated video samplesweren5 150 for

ongoing pain and n5 297 for transient
pain. Three samples were excluded from
the transient pain condition because of
insufficient frames with a detected face.
Nondetections were typically due to oc-
clusion by the researcher.

ML Methods for Estimating Pain
From Facial Expressions

WeusedMLmethods togenerate2 types
of pain estimation models: (1) binary
classification of clinically significant
painversusnopain,and(2)pain-intensity
estimation across a scale of 0 to 10.

For the binary classification of clinically
significant pain versus no pain, a logistic
regression model was used to learn the
mapping from the facial behavior mea-
sures to the binary pain labels. The input
to the model consisted of the 42-
dimensional AU data vector. The training
output consisted of 1 forpain and0 for no
pain, and after training, returned a classi-
fication probability for each test sample.

For pain-intensity estimation, a linear
regression model was used to learn
a linear combination of themeasures in
theAUdatavector topredictpain-intensity
self-ratings. Both regressionmodels used
L1 regularization, which yields a sparse
regression model and reduces model
overfitting.6 Overfitting was primarily
addressed through cross-validation, as
described in the following sections.

Separate models were trained for on-
going and transient pain.

Statistical Evaluation of the
Performance of ML-Generated Pain
Estimation Models

Performance of the trained binary pain
classification and pain severity estima-
tionmodelswere evaluated on novel data

using cross-validation.7 Cross-validation
was introduced by Tukey7 and is a stan-
dard method in ML for estimating model
performance on new subjects who were
not used to develop the model. AUC and
Cohen’s k were used to measure the
performance of the binary pain clas-
sificationmodels. Pearson correlations
(both within and across subjects) were
computed to evaluate pain-intensity
estimation models.

Evaluation of the Binary Pain
Estimation Model

Performance of the trained binary pain
classification model was evaluated on
data from new participants by using
cross-validation.7 The cross-validation
procedure for the binary model was
as follows. The data were divided into 10
partitions of 5 participants’ data each.
The model parameters were computed
by using data from 9 partitions, and the
10th was held out for testing. Model
parameters were then deleted, and the
process was repeated, each time holding
out a different 1 of the 10 partitions for
testing. Performance was then aggre-
gated over the 10 tests. This procedure
measures generalization to novel partic-
ipants,where data froma test participant
is never used for training. The number of
training participants was 45 and the
number of test participants was 50.

The following 2 metrics were used to
measure the performance of the binary
pain classification model: (1) AUC, and (2)
Cohen’s k. AUC ranges from 0.5 (chance)
to 1 (perfect discrimination) and can be
interpreted as the probability of the
system ranking an instance from the
positive class higher than an instance
from the negative class. Cohen’s k is
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a standard method form experimental
psychology to measure categorical
agreement between raters that takes into
account chance agreements. The decision
threshold for calculating k was 0.5.

Evaluation of the Pain-Intensity
Estimation Model

Performance of the pain-intensitymodel
was evaluated by using leave-1-person-
out cross-validation. (Withholding 1 par-
ticipant at a time enabled evaluations of
within-participant correlations. For the
binary painclassification,weused larger
partitions of 5 participants because the
AUC metric requires data from both
classes to return a nondegenerate
value.) This is the same procedure as
used to measure performance of the
binary pain estimation model, except
there were 50 partitions, and 1 partic-
ipant was held out for testing in each
partition. In this cross-validation pro-
cedure, the model was developed 50
times, each time leaving out 1 of the 50
participants for testing, and the pre-
viousmodel was deleted between tests.
Test performance was then aggre-
gated over the 50 tests.

We computed the correlationbetween the
reported labels and the ML prediction in
thefollowing2ways:(1)within-participant

correlation, and (2) across-participant
(overall) correlation. Within-participant
correlation was computed as the cor-
relation for 1 participant’s data at
a time, and then the mean correlation
coefficient was computed individually
across all participants. This removed
within-participant differences in AU
mean and scale between study con-
ditions (ie, normalized data across
observations within each participant).
Across-participant correlation (overall
correlation) was calculated by concat-
enating the test outputs for all test
participants before computing correla-
tions with self-report labels. We used
Pearson correlation coefficients as our
correlation measure.

ML Model Versus Current Methods
of By-Proxy Pain Assessment

We evaluated performance of the ML-
generated pain estimation models in
comparison with human observers’
(parents’ and nurses’) pain ratings.
Because inpatient nurse ratings were
not available for the final study visit,
which was performed after patient
discharge, and because most patients
with laparoscopic appendectomy are no
longer in pain by the time of a follow-up
visit,8–10 which occurred at least 12 days

postoperatively in our study, all nurse
ratings of the final visit were assumed
to be 0. Median (minimum, maximum)
pain ratings by children at the final visit
were 0 (0, 0) for ongoing pain and
0 (0, 2) for transient pain.

Forbinarydecisionsonpresence/absence
of clinically significant pain, proxy ratings
were treated as agreeing with child
ratings when proxy ratings were $4
on pain trials (child rating $4), and
,4 for no-pain trials (child rating5
0). Categorical agreement was mea-
sured with Cohen’s k. Signal de-
tection (the ability to separate the
pain and no-pain trials regardless of
decision threshold) was measured
by AUC.

For pain-intensity estimation, Pearson
correlations were computed between
observer ratings and child ratings.
Comparisons between overall correla-
tionsweremade by using Fisher’s z-tests.
Because parents and nurses had access
to information about elapsed time since
surgery when making their judgments,
performance of the model was com-
pared with human observers 2 ways:
once using a model trained only on the
facial AUs, and again using a model that
included time since surgery as a pre-
dictive variable along with facial AUs.
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